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1 Summary
Current conflicts underline the importance of Integrated Air Defense Systems 
(IADS) to keep aggressor air power at distance and ensure allied freedom of 
maneuver. But what happens if aggressors saturate, deceive, and neutralize allied 
air defense with hundreds of unmanned aerial assets in conventional attrition 
attacks or apply hitherto unknown tactics potentially enhanced by artificial intelli-
gence (AI)? 

That’s the question GhostPlay addresses by developing defense decision 
algorithms (Play) to support tactical military decision-making against aggressors 
that operate at different levels of ambition, excel at leveraging unknown and 
emerging tactics, and strive to exploit operational tempo to their benefit. Ghost-
Play uses a synthetic simulation environment (Ghost) to assess if and to what 
extent AI-enhanced solutions – operating in stand-alone or federated systems – 
can be used to accelerate operational tempo, enhance tactical level performance, 
and step-up efforts to anticipate future adversarial behavior. 

Against the background of a growing body of literature on defense innovation, 
the paper discusses GhostPlay’s goal to develop context and consequence-aware 
AI systems that exploit novel tactics to ensure and scale IADS-based protection. 
The paper sheds light on GhostPlay’s conceptual and technical setup, summarizes 
initial simulation-based findings and outlines future development options.
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2 If Innovation 
is the Solution, 
What is the 
Problem?
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“Military Innovation” has become a hot buzzword among NATO and EU members. 
Two forces shape this current defense innovation discourse. First, increasingly 
assertive adversarial military capabilities underline the need for allied defense 
innovation to keep the upper hand vis-à-vis strategic competitors.1 Second, the 
defense innovation discourse emphasizes the important role of emerging technol-
ogies like artificial intelligence (AI), autonomous and robotic systems, space, and 
quantum technologies to name but a few examples.2 In most cases, commercial 
entities that are not yet part of the defense ecosystem are frontrunners in devel-
oping and applying these technologies. This increases the need to integrate new 
players, technologies, and underpinning capacities into the defense industrial and 
technology base.

Although in fashion, defense innovation is notoriously difficult to define.3 Few 
capstone documents describe precisely what type of innovation armed forces are 
expected to deliver and what needs to change to accomplish the respective tasks. 
Based on a previous study4 we contend that defense innovation describes concep-
tual/cultural, organizational, and technological novelties that change how armed 
forces prepare for and conduct the application of military power. In so doing, 
armed forces build on past operational experience and requirements. 

Against the background of these three vectors, GhostPlay’s innovation under-
standing is two-fold. First, GhostPlay addresses a pressing gap as Suppression of 
Enemy Air Defense (SEAD) capabilities have atrophied in most EU/NATO nations 
since the end of the Cold War. We explore to what extent AI-based solutions 
can augment swarms of unmanned aerial vehicles (UAV) to conduct SEAD mis-
sions. Second, GhostPlay does not look at new technologies to augment existing 
technologies. Rather we look at ways in which the use of new technology triggers 
novel battlefield behavior at the tactical level. With these two aspects in mind, 
GhostPlay models novel AI-based solutions for air defense (AD) and aggressor 
swarms that learn how to outperform each other. The first project phase, which we 
discuss in this paper, focuses on the defender. 

To model and learn superior tactical AD behavior that withstands and counters 
UAV swarms, we consider two main aspects. First, in most recent conflicts UAVs 
gained the upper hand against AD as AD solutions have been brittle.5 Brittleness 
results from a lack of proper integration of all relevant sensors and effectors to 
create a powerful AD federation. Integration, in turn, requires coordination. This 
is where the second element kicks in. GhostPlay focuses on novel approaches 

1 �Work/Brimley, 20YY.
2 �Science and Technology Trends 2020-2040.
3 �Horowitz/Pindyck, “What is a military innovation and why it matters.”
4 �Borchert/Schütz/Verbovskzy, Beware the Hype, p. 13-17.
5 �Ibid., pp. 43-44.
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that increase tactical AD versatility to fend-off aggressors. In so doing, GhostPlay 
breaks new ground by exploring options to develop federated AD webs that 
coordinate single entities like sensors and effectors through emergent behavior 
without the help of central and hierarchical command and control (C2) solutions. 
As we explain in section 3.2, GhostPlay bakes the C2 capability into every element 
of the AD web rather than delegating C2 to a dedicated system, that adversaries 
can target and attack. This approach makes the AD web much more fluid, agile, 
and resilient in responding to threats and mission requirements.

Superior tactical versatility augments military freedom of action. To this purpose 
GhostPlay seeks to leverage the principles of war that guide and inform how 
military power is applied.6 Among other things, GhostPlay strives for

	� economy of effort by optimizing the use of effectors in time and place as well 
as with respect to how force is organized to achieve optimal effects under any 
given conditions; 

	� surprise by using emergent behavior in a way that produces tactical behavior 
not yet witnessed by aggressors;

	� initiative by anticipating future adversarial moves with the goal to preemptively 
position allied force to engage adversaries. 

In sum, GhostPlay contributes to defense innovation by developing technology 
that enables novel battlefield behavior to enhance tactical versatility, first, for air 
defenders and, at later stages, also for UAV swarms performing SEAD missions. 
In this regard, GhostPlay’s innovation is like free jazz as it improvises, responds to 
external stimuli, is dynamic, and integrates whatever asset is available to accom-
plish the AD mission by leveraging a new generation of coordination mechanisms 
that are context and consequence aware.

6 �UK Defence Doctrine, p. 28, 30-31, 50-51

https://www.defenseai.eu
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3 GhostPlay’s 
Novelty: 
Free Jazz vs.  
Central 
­Coordination
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While GhostPlay strives to create innovation in terms of tangible advantages and 
capability improvements for future AD concepts, the project’s underlying technolo-
gy contributes to one of the most challenging topics in contemporary AI research, 
the ability to learn tactical behavior in cooperation with other machines and/or 
humans. This entails three capabilities. First, the capability to properly assess a 
situation and anticipate adversarial behavior. Second, the capability to learn how 
to orchestrate and organize a system’s action to achieve objectives across time-ex-
tended scenarios and in response to enemy action. This also includes the ability 
to assess, how the relevant environment may respond to the defense system’s 
actions. Third, the capability to motivate a system to learn on its own when and 
how to cooperate to solve complex tasks with partners. These capabilities under-
pin future solutions striving for technical autonomy in machine-to-machine and 
machine-to-human interaction. 

Right now, the idea that Deep Reinforcement Learning solutions like AlphaGo, 
Alpha Star or Open AI have super-human capabilities creates quite a hype. But 
these systems play computer games in a well-known and completely stable 
environment. Military solutions, by contrast, operate in a non-stationary real-world 
environment, where unforeseen incidents occur. Moreover, commensurate with 
adversarial intentions and capabilities, the rules of the military game can change 
quite quickly. 

This is the environment in which GhostPlay is supposed to operate. Integrated Air 
Defense Solutions (IADS) adopt a layered approach (Figure 1). Sensor and effec-
tor reach is the discriminator that helps setting up Very Short Range Air Defense 
(VSHORAD), Short Range Air Defense (SHORAD), Medium Range Air Defense 
(MRAD) and long-range defensive ground-based “domes.”

Figure 1: Layered approach 
to air defense

Source: Uppal, 
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Today, specific systems integrate different sensors and effectors for each “dome.” 
Each system is developed in isolation. The governing principle to achieve inte-
gration is hierarchical and centralistic: Central command and control (C2) runs 
each system, which report into a hierarchic structure with nodes that coordinates 
multiple launchers. Ultimately, a high-level C2 or C4 system (Command, Control, 
Communications and Computers) integrates and coordinates all elements. Al-
though tried and tested, this set up remains static, is quite brittle and often leads 
to unsatisfactory sensor-to-effector latency.

Contemporary state-of-the art solutions may use AI to improve individual process-
ing steps in the observe-orient-decide-act cycle (OODA). GhostPlay goes beyond 
the automation of individual steps in the OODA workflow. Rather, GhostPlay 
policies establish a fine granular and forward-looking stochastic optimal control 
regime, while substantially accelerating decision-making and reducing sen-
sor-to-effector latency.

The GhostPlay architecture achieves this by mediating multiple concurrent control 
processes (“agent”), each implementing a specialized control strategy (“policy”), 
for example, to effectively control a physical system, like sensors and effectors, 
or to determine a certain action plan. GhostPlay’s agents are not centrally coordi-
nated. Rather they use common behavioral conventions (“rules of encounter”) to 
ensure mediation and information exchange while training to achieve a common 
objective in tandem with partners (multi-agent learning). In contrast to existing AD 
solutions, GhostPlay has no pipelined data-fusion process on the platform; rather 
a combined situational picture emerges over time via policies that have learned 
how to cooperate. This specific design choice has been motivated by the ambition 
to explore if defense solutions can be developed as emergent systems. 

3.1 Tactical AI: Basic Building Blocks

State of the art defense AI

Currently, state of the art defense AI focuses on introducing AI techniques or 
AI-based components to support individual OODA stages. For example, current 
applications detect and classify objects in aerial reconnaissance pictures or classify 
characteristics in the electromagnetic spectrum to infer a potential emitter. In so 
doing, the OODA loop implements (linear) pipeline processing. Thus, it is sufficient 
that deployed AI systems only implement a single-step decision. For example, an 
optical sensor acquires an image or a single video frame, if the sensor streams video 
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sequences (observe); this image is sent to an AI component that tries to detect and 
classify objects (orient); detected objects will be sent further down the pipeline for 
identification, and finally arrive at a decision to complete the cycle. The AI compo-
nent can be interpreted as a Bayesian classifier, which determines the probability 
that a certain (known) object is present based on the input image and the parame-
ters the AI component has learnt, in most cases weights of a neural network. Cur-
rently, the AI classifier thus implements a one-step input-to-output mapping. 

Improve classification and identification in non-benign environments 
and fog-of-war

In most real-world applications, in which environmental effects cannot be 
controlled,7 or – even worse – if the sensor must operate in a non-benign envi-
ronment, better results can be obtained, if classification is integrated in a con-
text-aware sensor control strategy (policy): The optical sensor acquires an image, 
which shows multiple objects. As these objects are far away from the observer 
they only appear as unspecific pixels on the image. A state-of-the-art AI classifier 
approach would have to classify each picture and would most simply ignore these 
target pixels.8 By contrast, a policy-based sensor management system has differ-
ent options: Based on the input image, the policy may decide to zoom-in on those 
pixels which are presumed to represent potential targets or threats that require 
additional sensor input for classification. The system might even decide to illumi-
nate the position of interest to obtain better information, for example, if clouds 
obscure the respective objects. This approach would enable the system to provide 
stable classifications early on and long before the state-of-the-art approach would 
even be able to recognize the object.

It is very important to note the difference between these two approaches: Interlac-
ing sensor management with classification and identification requires the system 
not only to learn input-to-output mapping as current AI deployments do. Rather 
the system needs to learn courses of actions to understand how to achieve good 
classification results as efficiently as possible. To learn good action sequences, the 
system must specifically learn to understand the instant effects of an action as well 
as possible long-term consequences. From a mathematical viewpoint this is no 
longer a Bayesian classification task, but requires solutions based on the mathe-
matical framework of a Markov Decision Process (MDP).9 

7 �Industrial environments typically try to create controllable environmental conditions such as lighting. For example, objects 
that come down a conveyer are always sensed in the same light to limit/exclude negative external effects on conveyor belt 
transportation. 

8 �Note, that this is not the result of a bad classifier but rather results from the fact that it is not possible to classify the targets 
with the given sensor input. 

9 �As the system perceives its environment through sensors and thus only has imperfect perception, we cannot assume to 
correctly observe the true states of the MDP. Rather we estimate and partially reconstruct the true state from the sequence of 
observations made so far, which further complicates the task into a Partially Observable Markov Decision Process (POMDP). 

https://www.defenseai.eu
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Learn important trade-offs to maximize effectiveness and minimize 
own-ship exposure/risk

In addition to understanding the instant impact of a specific action, learning good 
policies also implies that the system learns how to make important trade-offs. 
Zooming-in on a position, for example, reduces the observation window and 
might lead to a situation where the system “gets stuck” on pedantically classifying 
one object, while not recognizing that a fast-moving threat is heading towards the 
system outside of its observation window. The system also needs to carefully bal-
ance short-term success with long-term consequences: For example, deciding to 
illuminate a target with an active radar sensor may satisfy a short term information 
need but can put the observer at risk as the radar signal emitter may be detected 
by the target, which in turn may fire a high-speed anti-radiation missile (HARM) to 
destroy the observer.10 If the benefits of using an active sensor are bigger than the 
risks very much depends on the situational context. Moreover, the decision to use 
the active sensor directly affects how the situation will evolve. Systems that master 
this complexity are context-sensitive and consequence aware and constitute so 
called 3rd wave AI systems according to the US Defense Advanced Research 
Projects Agency (DARPA).11

Most often Deep Reinforcement Learning is used to train these systems, but this 
creates technical challenges. Take AI concepts for classification as an example. 
There is a tutorial input (e.g., tagged example) for each decision made by the 
system after each round of classification. But there is no immediate feedback to 
the system, which allows the system to understand whether the respective deci-
sion influenced the scenario in a positive or negative way.12 Although the system 
needs to maximize the long-term reward intake, the missing link suggests that 
positive or negative decision outcomes will only be known at the end of the sce-
nario. This, however, can involve several thousand decision steps into the future, 
which means that the system may get out of sync with the proper function it is 
expected to accomplish.

10 �Balancing short-term reward intake with long-term objectives is part of the “temporal credit assignment problem.” 
The actual implementation requires skillful engineering of what constitutes an “action:” The system must learn how to use 
radar functions in a sensible way, for example, by allowing a tracker to initialize and maintain a track with reasonable accuracy. 
We are currently working with macro-actions, which provide complete implementations for certain tasks. Moreover, we are ex-
perimenting with a combination of “track-before-detect” and “attention-based tracking” to analyze if these trained, model-free 
variants would enable faster effector engagement and better self-protection in high treat scenarios.

11 �https://www.darpa.mil/about-us/darpa-perspective-on-ai (last accessed 31 August 2022).
12 �AI classifiers typically use tutorial training. In this case, the immediate tutorial input is used to form an error signal, which is 

backpropagated into the classifier to adjust those parameters, which had the highest contribution to the error.

https://www.darpa.mil/about-us/darpa-perspective-on-ai
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Create good initial policies without large databases

There are concepts in reinforcement learning training protocols that collect traces 
through scenarios to aggregate so called state-values V(s) or state-action values 
Q(s,a). These concepts show, if – on average – selecting action a when in state 
s has been good or bad. Based on these results neural network structures are 
trained to represent the respective value functions.13 However, using only these 
concepts in practice may lead to (very) sub-optimal policies, because the positive 
or negative outcome of selecting action a in state s not only depends on the 
current state, but also on the policy that guides future actions. For example, a 
tracking radar is switched on to illuminate a target and gain accurate position and 
movement estimates for engagement. This decision may be positive if the threat is 
successfully intercepted. But it can also be negative in case of failure as the system 
has exposed its position and created an opportunity for adversarial attack. More-
over, using less precise passive sensors to preassign targets while reducing expo-
sure time would have improved tactics. To gradually converge to good policies, 
reinforcement learning systems need to strike a balance between exploiting past 
behavior and exploring new behavior that could deliver novel policies.

With scenarios spanning thousands of decision steps, finding good policies 
becomes combinatorically prohibitive. This creates specific issues during early 
training phases. In almost all cases, in which applications have been said to have 
“super-human” decision-making capability, initial policies used to start reinforce-
ment improvements have been developed with supervised learning. Supervised 
learning, in turn, was possible because large databases of expert level policies 
were available to create tutorial input. But the military application area addressed 
by GhostPlay, lacks the respective databases. That’s why GhostPlay needed to find 
a way to create initial good policies without databases. 

Today, GhostPlay implements a novel “search-in-policy-space technique” to 
achieve this objective. We decided to initially model an air defense platform, 
which has multiple on-board sensors and one effector. Each sensor and effector 
has its own policy, which learns how to optimally use the sensor’s specific charac-
teristics. Data is exchanged via a central on-platform long-term memory structure, 
from which all policies can read and to which all policies can write.14 Cooperation 
amongst the policies is mediated by a stigmergic signal. As expected, the result-
ing platform behavior is rather complex and adapts to fine nuances of an emerg-
ing scenario. 

13 �Graves, “Hybrid computing using a neural network with dynamic external memory;” Kanerva, Sparse Distributed Memory
14 �The algorithmic solution is a proprietary development of 21strategies and has been in use in the commercial domain for years. 

For related concepts, see: Sun/Wiestra/Schaul/Schmidhuber, “Stochastic search using the natural gradient;” Wistra/Schaul/
Schmidhuber, “Natural evolution strategies.”

https://www.defenseai.eu
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3.2 Emergence: Cooperative Behavior Paves the 
Ground for Technical Autonomy
Success in joint problem solving very much depends on the way in which perception 
and interaction with other agents in the team are modeled. As discussed above, 
a classical AD setup collects and propagates information via different sensors to a 
central C2 node, where information is aggregated, fused and appropriate courses 
of action are calculated. Then orders and instructions are flowing down the chain of 
command to individual effector systems, in our case the anti-aircraft artillery (AAA) 
platform. This approach is tried and tested but also raises several issues: 

	� Network centricity: The process heavily relies on transmitting data through the 
network to and from C2 nodes, which largely coordinate individual platforms, 
unless they operate in self-defense mode. What if communication is disrupted 
and bandwidth is limited? Are there other ways to reorganize local entities for 
effective cooperation if communication breaks down?

	� Sensor to effector latency: Propagating information through networks that require 
C2 nodes for data fusion generates sensor-to-effector latencies. Latency, in turn, 
can put individual AD platforms at risk if incoming threats are detected too late. 

	� Single point of failure: C2 nodes may constitute a single point of failure. If the 
opponent manages to detect and take out the C2 node, the whole AD net-
work becomes ineffective or at least massively degraded.

	� Reconfiguration: Even if the C2 node is not affected, loss of individual sensors 
or effectors in the network may require a reorganization of the compound. 
Currently this requires replanning, which again results in latencies. Looking 
at attrition scenarios, we assume that the ability of some network elements 
to automatically regroup could substantially improve overall resilience and 
effectiveness.

	� Ad-hoc support: Attackers commonly exploit the “relative strength principle.” 
This means that attackers will try to concentrate force at a specific and narrow 
point of the defender to temporarily overwhelm it. Even if the defender 
massively steps up its efforts, it is almost impossible to avoid that forces at the 
point of attack quickly run out of ammunition, while the larger part of the de-
fense infrastructure is almost unaffected. We speculate, that a system, which is 
able to locally reorganize, can provide ad-hoc support to the very forces under 
heavy attack and reinforce them quicker.
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	� Economy of effort: Multiple systems of an IADS cover the same airspace. In 
practice each of these systems has its own C2 component. These C2 compo-
nents need to decide or negotiate which effectors to deploy, such that econo-
my of effort is preserved. This decision is highly context sensitive.15 We assume 
that a system that properly understands this context will be able to make more 
effective effector choices commensurate with the threat.

To explore these hypotheses, our objective was to experiment with a setup, which 
does not have a C2 component at all. Rather our system is composed of individual 
AD platforms that learn how to cooperate and find an effective and emergent de-
fense response against any incoming threat.16 In essence, we strive to learn policies, 
which motivate other agents in the same team to cooperate. To do so, we model 
joint behavior amongst our AAA platforms as a Decentralized POMDP (DecPOMDP). 

The general idea is to develop a “theory of mind” among agents, i.e., we assume 
that actions amongst agents are communicative acts. Agents can interpret a fellow 
agent’s action when they observe them and learn which actions to take to convey 
a maximum of information to others.17 As a result, agents learn when and what to 
communicate to each other to best achieve joint and individual goals.18 From a 
technical perspective the major challenge was to extend the training procedure to 
explore in policy space and not – as usual – in action space, as one agent’s belief 
about another agent’s current state depends not only on the current state and 
observed action, but also on the policy explored.

First training results showed substantial instabilities in performance. Although training 
performance reached good performance levels, performance deteriorated massively 
when making slight changes to the agent team. Our analysis showed that agents 
learned “idiosyncratic”19 behavior. After changing the training protocols to imple-
ment cross-play and league play schemes, results could be stabilized. As our prelimi-
nary results, discussed in more detail below, make clear, this also vindicated the resil-
ience hypothesis presented above. Further investigation and training of the system is 
required to potentially learn optimal communication patterns and timing under low 
communication bandwidth constraints or electronic warfare (EW) conditions.

15 �Economy of effort suggests that it might not be economic to attack an artillery missile which costs US$150k with an AD mis-
sile that costs US$8m – unless the artillery missile may destroy an entity, which is an extremely important part of the defend-
er’s infrastructure. Disobeying economy of effort may quickly turn into massive losses of defensive capabilities and resilience.

16 �This is a rather radical standpoint. We expect that a real-world deployment will contain certain data aggregation and command 
nodes, however that individual systems will be able to work without them, but if they are available, make optimal use of them.

17 �Foerster, “Learning to Communicate with Deep Multi-Agent Reinforcement Learning.”
18 �The policy explored, which defines the behavior of agents, is assumed to be common knowledge to all agents in the team.
19 �For example, a AAA agent was observed to switch on its search radar. As the platforms have learned to operate mostly with 

passive sensors and networked RAPs, other agents believed this action to suggest the platform wants to signal that it is being 
attacked. This interpretation is not totally unintuitive. In general, however, switching on the search radar implies only that the 
platform wants to acquire more information about its close surrounding and does not automatically imply that the platform is 
under attack. If other agents do misinterpret such a behavior, they might move towards the sending platform to help, thereby 
giving up their position for no real reason.

https://www.defenseai.eu
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3.3 GhostPlay’s Approach to Simulation
The in-process combat simulator is a central piece of the GhostPlay environment. 
The simulator orchestrates interaction among objects in a staged war gaming 
scenario. The simulator’s computing power is key as scenarios with a fairly large 
number of entities need to be played quickly over several thousand time steps. 
Therefore, the simulator was built to be deployable “in-process” and directly 
interact with the objects to be trained without network latency. The simulator also 
has precautions to play scenarios in multiple time resolutions.

The simulator is extensible horizontally by adding new objects to the scenario and 
vertically by extending individual models with more details. While playing low 
resolution scenarios, the simulator works primarily with probabilistic models (repre-
senting summary statistics of interaction effects) and targets temporally extended 
scenarios as they would occur in an Anti-Access/Area Denial (A2/AD) situation. 
Equipped with higher resolution models, we have specified operational behavior 
down to level of modeling mechanical latencies of AAA turret movements or 
individual sensor control.

3.4 Preliminary Results
GhostPlay’s preliminary results are encouraging. After less than one year of simula-
tion-based research we observe that AD components behave in novel ways. New 
patterns reflect core tenants of the principles of war, as we argue below.

Single Platform Tactics

GhostPlay deliberately started out modelling a single air defense platform thereby 
using the FlakPz Gepard, a German AAA system, that is largely self-sustaining. 
The Gepard is also most qualified for the GhostPlay scenarios that require an 
AD system to operate on-board active sensors (search radar and tracking radar 
function) and passive sensors (optical periscope and infrared sensor) plus effectors 
while engaging targets on the move. We also wanted to experiment with differ-
ent coordination policies to analyze, if platform behavior adapts commensurate 
with additional sensor and effector capabilities, as this would suggest that the 
platform was able to learn how to use additional technical capabilities. Therefore, 
we equipped the AAA with hypothetical additional sensor (e.g., infrared sensor) 
and effector capabilities in the simulation. We also wanted to know if the policies 
learned would take advantage of a fused Recognized Air Picture (RAP) using 
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information from multiple sources and thus provided the system with a link-based, 
centrally supplied RAP.20

This single-platform setup has produced a series of interesting findings that can 
be summarized as follows: 

	� The system learns sensor-control strategies to improve target classification: 
Traditionally, for example, an AI classifier receives a video frame produced by 
the periscope camera to classify a target. In contrast, a periscope using the 
GhostPlay policy first learns how to zoom-in on a certain coordinate of interest 
as this leads to faster convergence on a stable classification.21

	� The system learns multi-sensor control strategies: The system is able to learn 
policies which implement situation-specific trade-offs between relying largely 
on passive sensors and deploying active sensors to minimize the risk of being 
detected and attacked by radiation-following missiles.22

	� The system learns to change behavior when a RAP is available: In the same 
scenario the system behaves differently if it acts upon RAP-ensured situational 
awareness. Behavioral changes are most notable for the use of passive sensors 
(periscope). These sensors are mainly used for 360° searches if the global air 
picture is not available. For example, search directions focus on incidents when 
the platform needs the most time to turn due to mechanical constraints or to 
adjust the turret position early on to anticipate incoming threats. 

	� The system learns to prioritize: The system learns how to prioritize target 
engagements. We have used a swarm of 105 UAVs. The swarm flew in a pack 
formation and broke up shortly before the AD system to stage individual at-
tacks. In the most demanding scenario 105 individual trajectories were meant 
to confuse the AAA sensors. At the moment the swarm broke up, a high-ve-
locity threat approached the AAA system from a different angle. The system 
has mastered the challenge of, first, detecting the high velocity threat; second, 
recognizing that this threat is far more serious than the UAV swarm; and third, 

20 �The RAP would be produced by a larger range data fusion process, using more powerful and longer-range sensors. As the RAP 
production involves processing and human validation of classification and identification, it provides a wider area view but may 
supper from reporting latency, to be considered when associating such information to local sensors.

21 �Similar to DeepMinds AlphaStar the action space is implemented with action macros, i.e., the system first determines the type 
of action (e.g., sensor control, effector-control, sensor number, all subsequent fields are then interpreted in context of the 
action macro). An interesting new opportunity is to connect the FlakPz with a passive sensor network (like TwinVis), with the 
passive system acting as a preliminary guidance and pre-warning system. Preliminary evidence suggests that this combination 
could greatly strengthen the survivability of the FlakPz as it reduces its electromagnetic emission.

22 �Evidence from some scenarios suggests that policies have learned to use the tracking radar to provoke the target to change 
direction in the attempt to escape the tracking beam. However, this needs to be analyzed in more detail, especially to ensure 
that observed behavior is stable and not just an unwanted artefact. This analysis will be done in the second project phase, 
where we plan to use a more elaborate aerial vehicle behavior in contrast to the current rules-based approach.

https://www.defenseai.eu


FREE JAZZ ON THE BATTLEFIELD20

turning turret and weapon to engage this threat while the UAV swarm contin-
ues to perform fancy maneuvers.

	� The fire-control policy learns appropriate timing. The system learns policies, 
which discriminate between platforms that deploy weapons (e.g., attack 
helicopters or UCAVs) and loitering ammunition. Generally, the learned policy 
shows a tendency to engage loitering ammunition later and weapon carrying 
vehicles earlier if they are in reach of effectors.23

	� The fire-control policy compensates low sensor resolution or track drops with 
UAV swarms: Especially in attacks by smaller scale UAVs (e.g., attrition attacks) 
sensor systems and trackers may not be able to resolve each UAV individually 
or produce switching tracks and/or lose/drop tracks required to re-initialize. 
We observe that the learned fire control policy is comparably robust to these 
issues. The policy learns to engage a “pulk” with a series of coordinated 
barrage fire patterns to gradually reduce the swarm size, even when tracks 
have a comparably wide covariance. Should further tests vindicate this be-
havior, sensor quality would matter less to AAA systems, while opportunities 
to operate these systems with remote sensors (e.g., using sensors from other 
platforms or forward deployed sensors) would significantly increase.

Overall, we trained the AAA platform against a variety of different threats, rang-
ing from single UAV/UCAV like the Bayraktar TB2, drone swarms, and helicopter 
attacks represented by Ka-52 and Mil Mi-28 combined with fast approaching 
missiles. Attackers were modeled with “local rule-based intelligence,”, i.e., the 
attack pattern and objective were predefined with pre-specified approach tra-
jectories. Attackers, however, operated on modeled rulesets prescribing how to 
respond to the detection of and the engagement by an AD system.24 All models 
had associated a probabilistic damage model, which allowed realistic effector 
impact estimation on a target object, given the target’s physical structure, effector 
type and impact area. 

Preliminary results suggest that the AAA platform learns very fine-granular en-
gagement tactics for different types of threats and even senses when it is impor-
tant to destroy the target or only disable it. Compared to a traditional OODA 
workflow implementation, our system reduces the volume of ammunition required 
to protect assigned objects by around 12% vis-à-vis helicopters and up to 42% 

23 �As of now this is just an observation. We have not yet properly analyzed this behavior. But looking at scenario runs with plat-
forms that carry weapons and use earlier generations of the trained policy suggests, that the earlier engagement may preempt 
the release of weapons by the platform. “As-early-as-possible” engagements also occur in scenarios with platforms that use 
models of laser-guided weapons, which could be interpreted as further evidence underpinning the observation.

24 �Following the principles discussed in Isci/Günel, “Fuzzy logic based air-to-air combat algorithm for unmanned air vehicles,” the 
local behavior in response to imminent threats and the orchestration of attacks while being engaged by the AD systems were 
modelled by Fuzzy inference but adapted for SEAD missions.
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in scenarios against attacking swarms.25 The project will extend and verify these 
figures further to publish detailed reports in the project’s mid-term report. We plan 
to open the simulation environment and/or to establish a test bed, where vendors 
can compare their individual control strategies.

Multi-Platform Tactics

In addition to single-platform scenarios, we combined multiple AAA units of the 
same type to protect an airfield as a a scenario-specific high value asset (HVA). The 
intention of these training runs was to get first insights in what could be expected 
from having multiple AAA systems learning to team up freely and without a central 
C2 coordination. We have achieved the following preliminary results:

	� A group of AAA platforms learned to cooperate in defending against a drone swarm 
with 30 UAVs. The AAA platforms’ cooperative tactics was already rather com-
plex (Figure 2): AAA platform 1 used its active sensors, while platforms 2 and 
3 were observing the situation under emission control (EmCon). As ten UAVs 
separated from the swarm to engage AAA platform 1, twenty UAVs proceeded 
further to the airfield as the main target. While AAA 1 engaged the attacking 
UAV swarm, AAA 2 attempted to sneak in by the main swarm. Meanwhile AAA 
3 pretended being a “lame duck.” Shortly before the UAV swarm staged its 
attack AAA 2 and 3 simultaneously engaged the main swarm. It turned out 
that the move of AAA 2 created a situation that severely restricted the free-
dom of maneuver of the swarm, which could be effectively neutralized. In 30% 
of all scenarios in which the AD systems had not been using this policy, the 
swarm prevailed and damaged the airfield significantly. By contrast, the AAA 
team using this policy outperformed the swarm in 98% of all scenarios played 
and protected the airfield. 

	� Increasing survivability by re-organization. In further tests we started to inves-
tigate the effects of attrition attacks. We used ten AAA systems to protect 
a HVA against an aggressor swarm of 105 UAV. The ten AAA systems were 
positioned around the HVA. The attacking swarm leveraged the principle of 
“relative strength,” which means that 70-90 UAVs would concentrate on a 
geographically small area, creating an overwhelming force for the two or three 
AAA systems deployed in that region. In parallel smaller UAV swarms would 
try to distract AAA systems and keep them busy in their positions. The con-
centrated force led to unavoidable losses of AAA systems in the scenario. In 
earlier training stages the AAA solution was lost and the number of UAVs that 
survived was large enough to attack the HVA. At later stages of the policy, the 

25 �In several UAV swarm scenarios, excess ammunition required by the OODA workflow-controlled systems was not the main 
issue. In these cases, the AAA platform simply did not survive the scenario. 

https://www.defenseai.eu


AAA platforms learned to continuously re-organize group assignments and 
re-prioritize targets. Consequently, whenever one AAA system was becoming 
dysfunctional another AAA platform was moving in (even preemptively, when a 
AAA platform was running low on ammunition), such that the UAV swarm was 
substantially decimated and no longer able to substantially harm to the HVA. 
Overall, the policy suggests that in 9,864 out of 10,000 scenarios a constella-
tion of ten AAA was able to put up effective protection against a 105-member 
UAV swarm, losing not more that three AAA platforms.

We need to emphasize that these are early preliminary results based on idealized 
assumptions. For example, the scenarios assume that AAA platforms share internal 
status information among them and can freely choose sensor deployment without 
having to adhere to EmCon rules. In addition, the AAA platforms did not have 
any restrictions to move out of their positions, nor were they bound by rules of 
engagement (RoE). We will use further simulation runs to explore how different 
RoE will affect the freedom of maneuver of the AAA platforms under considera-
tion. We will also scrutinize how RoE need to be crafted to ensure effective human 
control, without preventing the AAA platforms from delivering the results already 
accomplished. 

Source: Video material GhostPlay.

Figure 2: AAA platforms (blue) defend airfield against aggressor swarm (red). 
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In addition, there are several technical caveats. On the one hand it is by no means 
certain, that operating multiple AAA platforms in a federation without central 
coordination26 would produce any meaningful results. On the other hand, all AAA 
platforms could just jump on the same target as soon as it is in reach of their ef-
fectors, thus using available capacities very inefficiently. Although our preliminary 
results are very encouraging, we have taken precautions to learn stable policies 
thereby using team rotations, “other-play” and learning protocols like league-up-
dates. Further research is needed to ensure, that policies do not learn to agree 
on implicit communicative acts, which would break the POMDP conditions and 
may lead to instable behavior. Given imperfect perception models and simulated 
“fog-of-war” effects, the latter may be substantially more difficult as compared to 
computer games and will require further efforts in upcoming project phases.

3.5 Summary 
Initial findings suggest that learned policies can create behavioral patterns that 
reflect key principles of war. More fine-granular control of the sensor-effector 
network reduces the amount of force required (economy of force) to establish 
effective protection (objective). Our AAA systems advance situational awareness 
at the platform level by considering more information than only kinematic aspects 
of the target object. This enables the platform to anticipate adversarial moves 
and enables emergent and adaptive countermeasures. This behavior will make 
it impossible for the adversary to “read” and understand the AAA system. Thus, 
air defenders can exploit newfound elements of surprise that shift the initiative to 
their benefit. 

Defense systems leveraging network-centric warfare mainly focus on building fed-
erated solutions by seamlessly integrating all components. Our preliminary results 
show that cognition is about to significantly augment these federations as every 
component can interpret the current and future behavior of its companions based 
on policies known by all elements of the federation. This would offer new ways to 
ensure resilience in non-benign environments in which communication is likely to 
be missing and data will be corrupted. 

26 �In practical deployments there is at least an assigned sector of responsibility in which the platform actively engages targets.

https://www.defenseai.eu
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Performance
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In democracies armed forces operate within a framework set by ethical and moral 
principles as well as the rule of law.27 Within this framework, armed forces will 
sooner, rather than later, grapple with technical autonomy. In this context, defense 
AI causes significant concerns as it serves the use of force. Therefore, if defense AI 
is used to defend democracies, it must necessarily be embedded in national legal 
and value-oriented frameworks, relevant supranational rules and international 
law. In practice, however, it proves to be a major challenge to incorporate legal, 
ethical, or societal norms into the functions of AI systems. 

Since 2017, governmental and non-governmental organizations have produced 
lists that outline generic, mandatory quality attributes for AI systems. These lists 
can be seen as a first attempt to combine ethical, legal, societal, and technologi-
cal considerations. But these lists are far from sufficient to realize or promote core 
values such as human dignity and freedom, peace and justice, or soldierly virtues 
such as love of one’s homeland, truthfulness, or courage. 

Thus, a key research aspect of GhostPlay is to evaluate the applicability of the new 
IEEE 7000™ 2021 standard for Value-Based Engineering (VBE), which became 
effective in September 2021. Ideally, applying this standard would lead to defense 
solutions, with different qualities. That’s why GhostPlay wants to consider the 
entire universe of values that German Armed Forces attribute to their leadership 
principle of Innere Führung. Being in close contact and contributing to the stand-
ard’s further evolution, GhostPlay will be the first defense AI application worldwide 
designed to fully comply with IEEE 7000™-2021.28 

Moreover, GhostPlay’s use of the IEEE 7000™ standard will produce learning ma-
terials to train Value Leads, a new job description in systems development. These 
Value Leads possess the philosophical and technical understanding required for 
VBE with the goal to make Germany a pioneer and leading nation educating 
value-sensitive defense AI engineers and developers.

27 �As industry is actively researching aspects of technical autonomy, for example, to support autonomous driving and robot 
assistance, there is no plausible reason, why these technologies would not show up in a military context. Thus, the effects 
and possibilities of such capabilities must be understood and analyzed both, in terms of future force planning and in terms of 
potential future threats.

28 �https://standards.ieee.org/ieee/7000/6781/ (last accessed 31 August 2022).

https://www.defenseai.eu
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GhostPlay is a capability and technology development project that uses cut-
ting-edge insights from academic as well as applied research to provide the Bun-
deswehr with a novel level of tactical versatility. Tactical versatility complements 
the Bundeswehr’s strive for information, decision, and effects superiority. Ghost-
Play’s key added value stems from the fact that context and consequence-aware 
solutions can be transferred across applications used in different military domains. 
This creates valuable opportunities for cross-pollination between domains and 
military services.

Ultimately, GhostPlay’s demanding development agenda requires an innovation 
management approach that is agile and holistic. To this purpose GhostPlay com-
bines the Real-Option approach29 with an agile development process. With this 
approach new research and implementation topics are assessed according to their 
expected operational value, adopting a hypothetical pricing scheme, like financial 
option pricing. As the scheme takes into account internal and external risk factors, 
it balances risks and opportunities to maximize the expected operational value, 
which can be created by the assigned budget. 

Practically, the innovation portfolio is evaluated every six months, combining 
external information about recent conflicts, technology trends and recent initia-
tives of Western forces, collected and organized by the Defense AI Observatory, 
with actual market requirements as perceived by industry partners and the proper 
findings of our research project. 

29 �Trigerios, Real Options.

https://www.defenseai.eu
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6 Outlook
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After one year, GhostPlay has delivered encouraging results that underline the 
feasibility and potential improvements of tactical AI and emergent coordination in 
an AD environment.

Already at this stage, GhostPlay’s project partner Hensoldt has decided to transfer 
the project’s sensor resource management capabilities into a new environment to 
coordinate the deployment of active and passive sensors with tactical AI. This will 
create new capabilities for armed forces and vindicates the project’s methodologi-
cal and technological approach. 

Moreover, we will extend the set of principles used for GhostPlay by replacing a 
fuzzy logic-based interference mode currently used for attacking systems.30 At the 
next stage attackers shall use the same tactical AI and emergence principles to de-
velop new and change existing tactics during a mission in a “counter-play” train-
ing protocol. This means that AD systems and SEAD systems would be trained in 
alternating cycles. Whenever a more successful AD policy is found, SEAD polices 
will be adapted to overcome the new AD policy and vice-versa. These “oppo-
nent-play” cycles will enable both sides to continuously learn increasingly fine 
granular and complex behavior, enabling them to cope with today’s most danger-
ous threats at a certain stage.

AI-based SEAD tactics are of specific interest, as they directly address a current 
capability gap. To develop SEAD tactics against sophisticated threats such as S400 
and S500 AD compounds, the existing AD capability will be complemented with 
surface-to-air-missile models, which may extend the purely reactive RL architec-
tures used today with planning in large scale POMDP methods.

While many aspects of GhostPlay still require further research and analysis in terms 
of robustness and effects before they could enter operational service, the project 
creates added value for different military tasks:

	� Non-traditional red teaming for future force planning: The GhostPlay simulator 
and AI models can be used to test new sensor/effector constellations. Ghost-
Play provides the first environment, in which AI methods learn how to best 
use available physical capabilities. This provides force planners with advanced 
insights on how new sensors, effectors, communication, and platform capabil-
ities would affect future tactics. The system can thus be used to find the best 
capability combinations and efficiently develop operational requirements for 
new systems.

30 �Ernest, “Genetic Fuzzy based Artificial Intelligence for Unmanned Combat Aerial Vehicle Control in Simulated Air Combat 
Missions.”

https://www.defenseai.eu
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	� Non-traditional red-teaming for projects currently under development: GhostPlay 
can provide a testbed for system vendors to test their concepts and tactics 
against a hard-to-predict adversary. Currently new systems are evaluated 
against scenarios and vignettes developed by military analysts, but the se-
lection of scenarios is biased towards allied doctrine and allied thinking on 
expected adversarial behavior. By contrast, GhostPlay operates “model-free” 
and learns tactical behavior without any preselected vignettes. This approach 
provides behavioral patterns not yet seen in practice or in existing models and 
thus augments existing testbeds, better prepare allied systems, and potentially 
uncovers unknown weaknesses in systems under development.

	� Non-traditional red-teaming for crew-training. Being setup in a DIS (IEEE) 
framework, GhostPlay components can be integrated in pilot and air defense 
simulators to train crews on yet unseen tactics.

	� Transferring GhostPlay to other domains and mission areas: GhostPlay’s approach 
and policies can underpin the development of defense solutions meant to 
coordinate complex intercept missions without a central C2 component. This 
could provide novel solutions to protect naval platforms against surface and 
subsea threats and could enhance solutions to provide Joint Tactical Fire 
Support (JTFS), for example.

Finally, GhostPlay partners also mull the idea of potentially operating a “GhostPlay 
light” environment, i.e., a digital twin of the simulation environment with lower 
fidelity and unspecific sensor models. “GhostPlay light” could be hooked up with 
commercial video games. The intention is to leverage the “wisdom of the crowd” 
by involving many professional, semi-professional and hobby pilots to detect new 
and unconventional tactics. These new tactics could then be used to confront and 
refine GhostPlay. The respective results could be transferred into the restricted 
simulation environment of armed forces, which operate realistic sensor models.
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